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Transition metal-catalyzed isomerization and rearrangement Table 1. Au(l)-Catalyzed Synthesis of Bicyclo[3.1.0]hexenes?

reactions of unsaturated systems provide access to structural motifs enty substrate (mol%) catalyst product yield
not accessible through their thermal counterparts. This is exempli- N
fied by the numerous applications of transition metal-catalyzed MQ r=Ph @ 1% (PhsP)AUPFe ® %

Alder-ene reactions of 1,6- and 1,7-enynes for the synthesis of
cyclopentyl and cyclohexyl ring systerhsThe corresponding 2 Ar=MeO ¥ e 2% (PhsP)AUPFs
skeletal rearrangements of simple 1,5-enynes are much less studied.
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To this end, treatment of 1,5-enydewith 1 mol % palladium- ~ H

(I1) or platinum(ll) complexes returned mainly starting material (eq 8 Ph\/Q\\/v 8) 1% (PhaP)AuSHFg o v@/\/ (19) (>9§i‘y‘;r}b
2). Both silver(l) tetrafluoroborate and triphenylphosphinegold(l) n i
chloride failed to catalyze the rearrangementofOn the other . N ) - N .
hand, the combination of these two compléxespidly (5 min) PSS . PhﬂH @73 ap
and cleanly produced bicyclo[3.1.0]hex&fe an olefin isomer of
the proposed intermediatg)(in the thermal isomerization. In sharp Me, oTPS ve, M “/\
contrast to the gold(l)-catalyzed cyclizations wfalkynyl S-ke- M.~ omes
toesters, none of the competing Bxo-digcyclization to afford an " OM? Hoorondgzar P O s ot it
exemethylene product was observed. Finally, gold(lll) chloride also OMe OMe

cgtalyzed this reaction, however,_with significantly lower conver- apgeaction conditions: 0.5 M 1,5-enyne in dichloromethane? Bia-
sion. On the other hand, 5% Au@lith 15% AgOTf gave complete stereomeric ratio determined Bid NMR. ¢ Starting material (19%) was
conversion; however, this was accompanied by a substantial amountecovered.

of decomposition. Terminal and internal alkynyl substrates (entry 4) react with equal
) facility, the latter producing an allylic quaternary center. Substrates
catalyst conversion .. . . . .
on (CHsCN)PACly, 24h  ~4% containing either 1,1- (entry 5) or 1,2-disubstituted (entried ®)

CHaClp, 1t /y PICly, 24h ~4% (g olefins cleanly undergo the gold(l)-catalyzed isomerization. For

///\/\ 1% catalyst " e example, 3 mol % triphenylphosphinegold(l) hexafluoroantimonate

4 5 (PPh3)AUCI, AgBF4, 5 min.  100% smoothly catalyzes the formation @B by the rearrangement of
e sm 1,1-disubstituted olefi2.

To gain insight into the mechanism of this transformation, we
A range of 1,5-enynes undergo the triphenylphosphinegold(l)- studied the stereochemical course of the rearrangement. We found

catalyzed rearrangement (Table 1). The propargylic position canthat the gold(l)-catalyzed reaction of substrates containing 1,2-
be unsubstituted (entry 6) or substituted with aryl (entrie§)lor disubstituted olefins is stereospecific. For exampt);dlefin 18
alkyl substituents (entries 8 and 9). Additionally, potentially selectively afford¢rans-cyclopropand9 (entry 8), while g)-olefin
nucleophilic aromatic groups (entry 2) do not interfere with the 20 produces a 97:3 mixture of diastereomers in favorcis
reaction!® Introduction of an alkyl group at the allylic position is  cyclopropanel (entry 9). Additionally, enantioenriched 1,5-enyne
also tolerated, producing bicyclo[3.1.0]hexerfeas a 10:1 mixture 22is isomerized t@3 with excellent chirality transfer (entry 103.
of diastereomets$ (entry 6). The rearrangement proceeds when the Finally, deuterium-labeled 1,5-eny8d underwent gold(l)-catalyzed
1,5-enyne 16) is unsubstituted at both the allylic and propargylic conversion to a bicyclo[3.1.0]hexen25j in which the deuterium
positions, albeit with slightly decreased efficiency (entry 7). was selectively incorporated at the vinyl position (eq 3).
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On the basis of these data, we propose the process detailed in

Scheme 1 as the most likely mechanism for this transformation.
Coordination of cationic gold(l) to the alkyne followed by nucleo-
philic addition of the pendant olefin produces cyclopropylcariyl
cation 27, which may have some gold(l) carbene charac®8).(

The bicyclo[3.1.0]hexene product is generated by a 1,2-hydrogen

shift onto a cation or a gold(l) carbene. The stereoselectivity and

stereospecificity of the reaction can be accounted for by considering

half-chair transition states, with the large groups occupying
pseudoequatorial positions, similar to those proposed for the
acetylenic Cope rearrangemétt.

The proposed mechanism suggests that cationic interméfiate
28 could potentially be trapped in the presence of a nucleophile.
In accord with this hypothesis, cyclohexenyl methyl etB@mwas
produced when the gold(l)-catalyzed reaction of eng8ewas
carried out in methanol (eq 4).Notably, for this reaction the
presence of a quaternary carbon at the propargylic position is
necessary to prevent competing formation of the bicyclo[3.1.0]-
hexene; however, in the absence of nucleophile, a 1,2-alkyl shift
is observed. For example, 1,5-enyi3dsand31bundergo a gold-
()-catalyzed tandem cycloisomerizatiering enlargement proceé$s
to afford tricyclic structure32a and 32b in 72 and 66% yield,
respectively (eq 5).
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In conclusion, we have developed a transition metal-catalyzed

rearrangement of 1,5-enynes that produces bicyclo[3.1.0]hexenyl
products that are isomeric to those produced as intermediates in

the thermal reaction. The gold(l)-catalyzed reaction can be con-

ducted under “open-flask” conditions and as such can be combined

with our rhenium-catalyzed propargylic allylatignto provide a
one-pot synthesis of bicyclo[3.1.0]hexenes from propargyl alcohols
(eq 6). This carborricarbon bond-forming reaction provides a

stereospecific method for the synthesis of a variety of cyclopropane

containing carbocycles, including tricyclic structures prepared by
a tandem cycloisomerizatieiting enlargement reaction. Develop-
ment of gold(l)-catalyze'd carbon-carbon bond-forming reactions,
including an enantioselective version of this cycloisomerization, is
ongoing and will be reported in due course.
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Scheme 1. Mechanistic Proposal for Au(l)-Catalyzed
Cycloisomerization
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